

INTRODUCTION

SCS7* is Asahi's latest lead free alloy development. As an enhanced tin/copper lead free alloy, it is highly recommended to directly replace existing SnCu0.7 solder. This alloy not only exhibits the excellent ductility of SnCu0.7 solder, it also possesses superior mechanical strength both in ambient and high temperature environments. SCS7's fatigue resistance is now comparable to tin/lead solder and as such, SCS7 has addressed the fundamental concerns of SnCu alloys.

SCS7 (CLF5043) lead free no clean core flux solder wire is formulated using purest raw chemicals together with halide-free materials, which guarantees absolute flux core continuity and consistency in solder properties. It provides excellent instant wetting action and superior solderability on a variety of surface finishes.

This wire is specially formulated for fine wire applications e.g. 0.4 mm and below.

SPECIFICATIONS

Item	Specifications	Test Standards		
Flux Content	3.0 +/- 0.5 wt%	Singapore Asahi		
Density of Core Flux @ 25°C	1.066	Singapore Asahi		
Halide Content	0 wt%	IPC-TM-650 2.3.35B		
		JIS Z 3197: 1999 8.1.4.2.2		
Water Extract Resistivity	$>1.0 \times 10^4 \Omega$ -cm	JIS Z 3197: 1999 8.1.1		
Surface Insulation Resistance	>1 x $10^8 \Omega$	IPC-TM-650 2.6.3.3		
(Raw Flux)	$>1 \times 10^{11} \Omega$	JIS Z 3197: 1999 8.5.4		
(85°C, 85 %RH, 1000hrs)				
Copper Corrosion Test	Pass	IPC-TM-650 2.6.15		
		JIS Z 3197: 1999 8.4.1		
Copper Mirror Test	Classified as "M", Pass	IPC-TM-650 2.3.32		
		JIS Z 3197: 1999 8.4.2		
Flux Activity Classification	ROM0	IPC J-STD-004A		
Spread Factor	>80% (SCS7)	JIS Z 3197: 1999 8.3.1.1		
Residue Dryness Test	Dry	JIS Z 3197: 1999 8.5.1		
Residue Appearance	Pale Yellow & Minimal	Visual		

^{*} UK Patent No. GB2406101

ALLOY SPECIFICATION

Main Composition				
		IPC J-STD-006B Specs (Wt %)		
Tin	Sn	Remainder		
Copper	Cu	0.7 +/- 0.1		
Silicon	Si	0.02 +/- 0.01		
		•		
Contamination	1			
Silver	Ag	0.10 max		
Aluminium	Al	0.005 max		
Arsenic	As	0.03 max		
Gold	Au	0.05 max		
Bismuth	Bi	0.10 max		
Cadmium	Cd	0.002 max		
Iron	Fe	0.02 max		
Indium	In	0.10 max		
Nickel	Ni	0.01 max		
Lead	Pb	0.05 max		
Antimony	Sb	0.05 max		
Zinc	Zn	0.003 max		

PHYSICAL PROPERTIES

	SCS7	SnCu0.7	Sn63Pb37
Melting Temperature	227°C	227°C	183°C
Coefficient of Thermal Expansion	22.7 μm/m°C	19.3 μm/m°C	23.3 μm/m°C
Density	7.30 g/cm ³	7.31 g/cm ³	8.40 g/cm ³

MECHANICAL PROPERTIES

	SCS7	SnCu0.7	Sn63Pb37	
Tensile Strength	45.83 MPa	44.35 MPa	52.54 MPa	
Yield Strength	38.78 MPa	37.31 MPa	39.28 MPa	
Max Percent Strain	68.16 %	58.31 %	67.38%	
Energy to Yield Point	0.203 J	0.100 J	0.164 J	
Energy to Break Point	18.05 J	15.28 J	18.98 J	
Toughness	25.54 MPa	21.62 MPa	26.85 MPa	
Cycle Fatigue Resistance, N _f	3000 - 3500	1125	3650	
Creep Resistance				
Load at 1kg @ 145°C	>40hrs	N.A.	>27 hrs	

APPLICATION

SCS7 (CLF5043) lead free core flux solder wire is easy to use for automatic, manual, rework, point and brush soldering. For the best soldering results, the recommended parameters are shown:

Solder Iron Tips: All Types especially the tapered types

Soldering Temp: > 350 °C Soldering Time: > 350 °C 1 ~ 3 secs

- Keep solder iron tips clean.
- Tinned iron tips before use.
- Wear gloves when soldering to avoid contaminating the wire.

(Note: Soldering parameters are dependent on tip type, soldering station wattage configuration, wire diameter and type of applications.)

PACKAGING

SCS7 (CLF5043) lead free core flux solder wire is commonly available in various diameters such as 0.25, 0.3 and 0.4 mm.

Normal	0.20kg	0.20kg	0.20kg	Fat Bobbin (for	0.03kg	0.10kg	0.20kg
Packaging				autosoldering)			
Diameter (mm)	0.25	0.3	0.4	Diameter (mm)	0.25	0.3	0.4

RESIDUAL REMOVAL

Since the residues are transparent, minimal, dry, non-tacky and practically inert after soldering, removal is usually not necessary. For assemblies that require cleaning, the residue of SCS7 (CLF5043) lead free core flux solder wire can be completely removed by any solvent type flux cleaner available in the market.

SAFETY

Wear a chemical mask if the operators are allergic to the fumes released during soldering. For more information, please refer to Material Safety Data Sheet.

STORAGE

Store the solder wire in a cool, dry environment. Wrap up the solder wire when not in use to reduce exposure to environment. SCS7 (CLF5043) lead free core flux solder wire can be kept for 2 years if proper storage conditions are observed.

SINGAPORE ASAHI CHEMICAL & SOLDER INDUSTRIES PTE LTD

47 Pandan Road S(609288) Tel: 6262-1616 Fax: 6261-6311

Website: http://www.asahisolder.com E-mail: sales@sinasahi.com.sg

TEST ANALYSIS

Various tests were conducted to evaluate the performance and reliability of CLF5043 core flux.

HALIDE CONTENT

This test is to determine the amount of halide present in the core flux.

Method:

By titration method with end point determination. The % chlorides calculated based on the following formula:

Result:

Halide Content = 0 wt%.

WATER EXTRACT RESISTIVITY

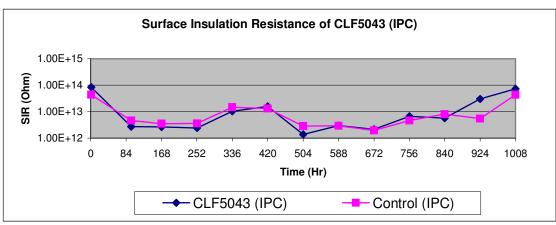
This test measures the resisitivity of the flux constituents.

Method:

- Take an amount of the flux containing solid portion equivalent to 0.05 +/-0.005g as the sample.
- Put the sample in a beaker with 50ml of purified water. Cover the beaker with a watch glass.
- Heat and boil it for about 5 mins, and continue heating for about 1 min.
- Cool the beaker for about 10 secs at room temperature, then place beaker in a water bath of about 20°C to obtain the test solution.
- Immediately measure the resistance of this water solution using a conductivity meter.

Result:

The test result obtained is 1.8 x $10^5 \Omega$ -cm, which meets the minimum required specific resistance of 1.0 x $10^4 \Omega$ -cm.

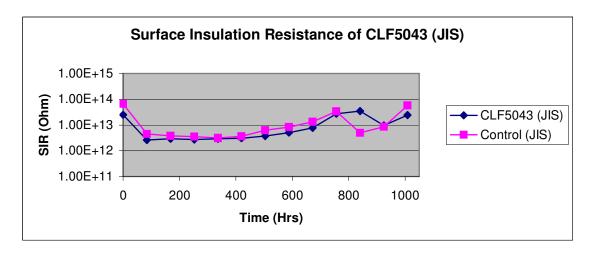

SURFACE INSULATION RESISTANCE

It determines the surface insulation properties of the flux on the finished product. Thus, it determines the reliability of the residue if left on board without cleaning.

Test Conditions (IPC-TM-650 2.6.3.3)

Humidity : 85 %RH
Temperature : 85°C
Duration : 1000hrs
Bias Voltage : +50V D.C.
Applied Voltage : -100V D.C.
Test Coupon : IPC-B-24

Result:



Surface Insulation Resistance: $> 1.0x10^{12} \Omega$, passed.

Test Conditions (JIS Z 3197: 1999 8.5.4)

Humidity : 85 %RH
Temperature : 85°C
Duration : 1000hrs
Bias Voltage : +50V D.C.
Applied Voltage : -100V D.C.
Test Coupon : JIS C 6480

Result:

Surface Insulation Resistance: $> 1.0x10^{12} \Omega$, passed.

COPPER CORROSION TEST

Evaluate the extent of corrosion due to the flux residue after soldering under moisture.

Method:

- Weigh 1 gram of solder and make into a coil with a 3mm mandrel.
- Place the cleaned copper coupon on the surface of solder bath set to 250°C.
- Let the specimen remain on the solder bath surface for 5 secs after solder fusing.
- Allow the specimen to cool for 15mins.
- Place the specimen in a humidifier set at 40°C, 90 %RH for 96 hrs.
- Inspect the specimen for growth of corrosive compounds that are assumed to be green, bluish green or white.

Result:

No drastic change in appearance of copper under the residue or at the flux boundary. CLF5043 has passed the corrosion test.

COPPER MIRROR TEST

This test provides a visual check on the corrosive effect of the flux on the substrate.

Method:

- Place one drop of test flux onto the copper mirror.
- Keep copper mirror at 23 +/- 2°C & 50 +/- 5 %RH for 24 hrs.
- Remove test flux by immersion in clean 2-propanol.

Result:

The result showed that CLF5043 is classified as "M".

SPREAD TEST

The purpose of this test is to measure the spread capability of the CLF5043 core flux.

Method:

- Maintain hot plate temperature at 250°C.
- Place the solder wire (Ø3mm) on a copper coupon.
- Place the coupon on hot plate.
- Measure rate of spread with the formula below:

```
Rate of Spread = (D-H)/D x 100%

where D = 1.24 x V<sup>1/3</sup>

V = Mass / Specific Gravity

H = Height of Spread Solder
```

Result:

The result showed that CLF5043 has a spread factor of 80% with SCS7 solder.

RESIDUE DRYNESS TEST

This test determines the tackiness of the residue after soldering.

Method:

- Place circular solid solder wire preform on Cu.
- Add 0.035 to 0.040g of solid portion of flux to centre of wire preform.
- Set solder bath temperature at 50 +/2 °C above the alloy's liquidus temperature.
- After fusing of solder, leave it for 5 secs.
- Take the test piece out of the bath and cool it for 30 mins.
- Sprinkle powder talc onto the flux residue on the test piece.
- Brush the surface of the residue in the same direction twice and inspect test piece.

Result:

Powder falls off test piece easily. The flux residue has passed the dryness test.

DISCLAIMER OF LIABILITY

SINGAPORE ASAHI CHEMICAL & SOLDER INDUSTRIES PTE LTD

47 Pandan Road S(609288) Tel: 6262-1616 Fax: 6261-6311

Website: http://www.asahisolder.com E-mail: sales@sinasahi.com.sg

[&]quot;All statements, information and recommendations contained in this catalog are based on data and test results which we consider, to the best of our knowledge and belief, to be reliable and informative to the users but the accuracy and completeness thereof is not guaranteed. No warranty, expressed or implied, statutory or otherwise, is given regarding the use of the information and products contained in this catalog since the conditions and suitability for use, handlings, storage or possession of the products are determined by the users and are therefore beyond our control. We shall not be liable in respect of any liabilities, losses (including consequential losses), damages, proceedings, costs, claims or injuries whatsoever sustained or suffered by the users (including any third parties) in connection with the use of the information, recommendation and the products contained in this catalog."